
Item	Item-No.
M-SMC Download	00016959-90
M-SMC RT	00016959-63

M-SMC Software Motion Controller

When synchronous rotary and linear motions are needed, the following question has to be answered: How shall the individual axes be coordinated?

The M-SMC software module offers a solution for this task. M-SMC calculates the position and speed profiles and controls the drive axes. Thereby, considered gear ratios enable synchronous movements. Moreover, individual synchronous slave axes can be stopped and started again during machines' operation. This enables an electronic gear system to be implemented in the shortest possible time.

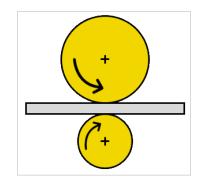
- Software module for open and closed loop control as well as monitoring of motion axes
- Operation of individual axes or synchronized multi-axes motions
- Jerk-optimized motion profiles
- Several methods for axes synchronization (gearing)
- Configuration and diagnostic via the SolutionCenter
- Commissioning user interface (SMC-Monitor)
- Library for IEC 61131-3 PLC programs

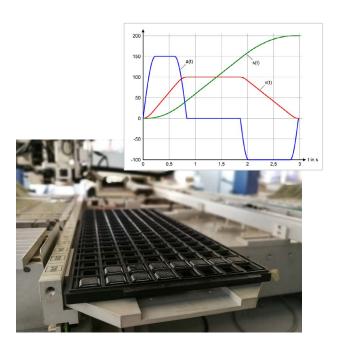
Position synchronization by design

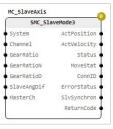
Production processes often require the position synchronized motion of all drive axes involved. Variable speeds and different roller diameters also increase complexity. M-SMC provides a solution for this task by design. Master-slave relations including the required synchronization method can be defined by means of a configuration.

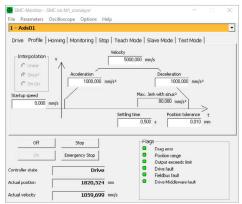
During operation the slave axis can be synchronized at any time and stopped again. This enables applications such as a flying saw to be implemented in only a few steps.

Optimized motion profiles


When approaching a new target position, minimum travel time and low occurring jerk seem to exclude each other. The Sin-Lin interpolation function enables M-SMC to offer a solution that combines the benefits of both previous characteristics. This therefore makes it possible to achieve high production cycles while reducing wear on mechanical components at the same time.


M-SMC also permits to adjust the target position of a motion axis even after movement has been started. Therefore, no braking and restarting is required. In this way, permanently executed motion sequences can still be adjusted to workpiece tolerances during the runtime without any loss in production time.


Creating applications easily


M-SMC is integrated in a machine controlling sequence program directly via the IEC 61131-3 library. Within this program, target positions are set, movements are started, and axes are synchronized as required. Command input via a HMI are also processed here.

The SMC-Monitor commissioning interface enables the full parameterization, operation and diagnosis of the software module. Utilizing Scope 3 software oscilloscope, highly dynamic processes are recorded directly on the controller and fully visualized on the PC. In this way, a complete overview is always ensured. This not only shortens the time required for the initial commissioning, but also enables fast troubleshooting during operation.

Software module on the M1 controller
SolutionCenter
SMC-Monitor
SMC-Monitor
Application integration via library for IEC 61131-3
16 axes
No limit
200 µs to 20 ms
Rotational motions
Linear motions
Linear interpolation between two set values
• Sin² interpolation between two set values
Sin-Lin interpolation enables short travel times in spite of jerk optimization
Depending on the motion axis M-SMC performs various tasks:
The M-SMC software module performs the calculation of the set position
and set speed including closed loop control
• The M-SMC software module performs the calculation of the set position
and set speed, the closed loop control is carried out in the drive
PID controller with feed forward control as
Velocity controller Position positive languistic (with out points a velocity controller)
Position controller with / without minor velocity controller Test functions, accessible via SMC-Monitor, enable function verification of
selected controller parameters.
Various methods are available depending on the drive, sensor and encoder
used.
Checking of the actual axis position in relation to the set travel range and
protection including hardware limit switches.
This ensures that a motion axis reliably follows its set value.
SMC-Monitor commissioning user interface
Software oscilloscope Scope 3
The target position can be changed during a motion that has already started (move in move).
This enables a path segment of a linear axis to be projected onto a rotatio-
nal motion from 0° to 360°. This enables a simple synchronization of axes with cyclically recurring movements.

M-SMC	
Master / Slave Operation	
Master axis	Any M-SMC axis can be defined as master axis
	The target position or set speed is defined via the application
Slave axis	Any M-SMC axis can be defined as slave axis and linked to a master axis
	An individual synchronization method is selected for each slave axis
	During operation slave axes can be synchronized at any time and stopped again
	The gear ratio can be defined for each axis
Synchronization methods	Synchronized speed
	Synchronized position
	- Synchronization to a relative position for linear motions
	- Synchronization to a recurring position for rotating motions
Drive Interface	
Analog	Via Bachmann hardware modules (e.g. ISI222, GIO212)
Fieldbus	By means of DriveMiddleware or another user-specific drive integration
Step motor	Via Bachmann hardware modules (ACR222)
	Profiles are generated by M-SMC
Position Detection	
From M1 via rotary encoder	The actual position is determined with Bachmann hardware modules (e.g. ISI222, CNT204).
By the drive via rotary encoder	The actual position is determined in the drive and transferred to M-SMC via the fieldbus.
Software Interfaces	
Process communication	Internal values are provided as SVI variables and are directly available for other
	applications or the visualization.
Application interface	IEC 61131-3 library for parameter assignment, operation and diagnostics of the M-SMC software module
Installation	
Installation medium for engineering PC	Installer, available by download
License protection on the M1 controller	Hardware-dependent license file
System Requirements	
Engineering PC	Microsoft Windows 7, 8.1, 10, hard disk 512 MB free memory
M1 real-time system	Bachmann M1 processor modules of the series MH, MC, MX; M-Base from V3.95R

Order Codes M-SMC		
Item	Item-No.	Description
M-SMC Download	00016959-90	Software, PLC library, commissioning tool and user documentation for M-SMC. Requires M-Base.
M-SMC RT	00016959-63	License to operate M-SMC software modules on a M1 controller