
Bachmann electronic GmbH • 08/2021 • Specification subject to change – the product’s characteristics are exclusively governed by the data of the respective user manual.

PLC Developer

Modern automisation systems solve complex tasks that go well
beyond plant control. The procedural programming, in accordance
with IEC 61131-3, allows multiple tasks to be solved in an efficient
and structured way. This is where the PLC Developer supports the
system programmer through all phases of software development.

Synergies in the SolutionCenter
The seamless integration of the PLC Developer into the
SolutionCenter provides added value from the resulting synergies:

• By linking PLC projects in a Solution project with device
 configurations and templates, they can be combined to form
an overall solution and managed as one.

• The version management function using GIT and SVN enables
the user to trace code modifications easily and provides the
basis for effective release management.

• The use of extensions, in the form of plugins, which can also
be directly installed from the Eclipse Marketplace, simplifies
engineering and programming.

• The SolutionCenter scripting API enables the use of modern
software development methods such as continuous
 integration, model-driven development and test-driven
 development.

Automation / Engineering Software / Programming

Bachmann electronic GmbH • 08/2021 • Specification subject to change – the product’s characteristics are exclusively governed by the data of the respective user manual.

Efficient programming and management
The clear and intuitive editors allow modern and efficient
operation:

• The user-defined syntax highlighting increases the code
readability in »Structured Text« (ST).

• The modern and clear design of the user interface for
programming in »Continuous Function Chart« (CFC) also
allows a good overview in large programs.

• Thanks to the fully available code navigation and
call hierarchy, it is also possible to easily identify
 interrelationships in complex applications.

• Efficient programming is particularly enhanced by
the context-sensitive autocomplete function and the
 predefined and extendable code and file templates.

• Project management in one workspace enables all changes
to the source files to be stored in a local history. These can
be called again at a later time irrespective of whether the
project is version managed.

• An extensive validation function immediately notifies the
programmer of programming errors when the program is
edited. Quick fixes correct missing program sections such
as variable declarations by adding them automatically.

• Information on interfaces and documentation of function
blocks or variables can be called and displayed via tooltips
without leaving the editor.

• The project-wide changing of identifiers can be carried out
easily and thoroughly.

• When entering and saving the program, the notation of
keywords and identifiers is corrected automatically.

• The CFC editors can also be fully operated via the
 keyboard. This increases efficiency when creating CFC
diagrams.

Modern operation through modular structure
The PLC Developer has an open, flexible and transparent
design, and thus brings the engineering to a new level:

• All sections of the source code are saved in text form in the
project in a defined file format, which opens the possibility
for the user to generate modules and configurations.
Recurring operating steps can thus be automated and
copy/paste errors prevented.

• The structuring of the program sections can be selected
as required and thus enables the application to have a
modular design.

• In order to ensure a reproducible build, the libraries used
are saved in the project. An update produces a clear
 display of the libraries present in a newer version.

• Creation and debugging of user-defined libraries in ST,
CFC, C and C++ is possible throughout and particularly
 supports the reusability of code in other projects.

• Programming is carried out irrespective of the target
platform, which only has to be selected at the time of
 execution. After compilation, the created application can
be transferred directly to an M1 controller and run.

• Externally visible variables can be configured clearly in the
symbol configuration.

Automation / Engineering Software / Programming

Bachmann electronic GmbH • 08/2021 • Specification subject to change – the product’s characteristics are exclusively governed by the data of the respective user manual.

Better quality through rapid troubleshooting
The debug framework of the PLC Developer is extremely
useful, particularly with the development of new applications
and with troubleshooting:

• After a debug session is started, the actual variable values
can be monitored without stopping the application. This
can be carried out via the clearly designed monitoring
table in ST or the inline monitoring in CFC. The individual
variables and structures of the application can also be
combined in variable lists and monitored jointly, plotted in
a graph and set.

• Activating the flow control makes it possible to follow the
program flow without stopping the application.

• An application can be stopped at any position via a break
point and then executed in steps. Break points can be
managed jointly and activated or deactivated altogether.

• When the application is stopped, the stack frame is
displayed by which it is also possible to navigate to the
functions to be called.

• The dynamics of variables can be better assessed by
 highlighting variable values when they change.

• Values of Boolean variables are highlighted in color
in order to better identify the current status of an
 application.

• Code modifications can be applied online without stopping
the application. The PLC Developer detects during the
transfer whether the online change can be carried out.

• It is also possible to debug several applications
 simultaneously. When an application with several tasks
is debugged, the active debug task can be selected when
connecting and changed during the debug session.

• PLC Insight is an automatically generated webMI
visualization based on selected CFC blocks. It provides
users with access to the application logic without the need
for an engineering tool. The visualization is installed on the
target controller together with the application. Along with
the signal flow, values of exported variables can also be
monitored and changed.

Automation / Engineering Software / Programming

Bachmann electronic GmbH • 08/2021 • Specification subject to change – the product’s characteristics are exclusively governed by the data of the respective user manual.

PLC Developer

General

Integration • Management of several PLC projects in one workspace
• Management of all devices and PLC projects in one workspace
• Linking of PLC projects in the Solution projects for joint management

Display • Predefined perspectives with views for processing PLC projects
• Clear, freely selectable arrangement of views and editors

Version management • ZIT (local and remote)
• SVN (local and remote)

Libraries • Integration of libraries as copies with version comparison
• Version display
• Incorporation of standard libraries
• Incorporation of PLC libraries
• Incorporation of external PLC libraries (C/C++, MATLAB® /Simulink®)

Automation • Execution of scripts in the SolutionCenter (JavaScript, Python)
• Predefined modules for creating and transferring applications

Expandability • Extensions (plugins) installable via Eclipse Marketplace
• Use of user-created Eclipse plugins

Scalability • Creation of the application independent of the target platform
• Transfer and execution on all M200-CPUs

Structure • Combination of projects in work sets
• Folder structure freely selectable in the project
• Full access to all source code files

Compatibility • Compatible with M-PLC (compiler and runtime)
• Import of M-PLC projects possible

Editors
Languages • Structured text (ST)

• Continuous function chart (CFC)
• Can be combined as required

Code navigation • Finding references (in the project)
• Call hierarchy (up to the task)
• Caller hierarchy (hierarchy levels expandable)
• Opening declaration (local and global)

Auto-complete • Context-sensitive (declaration, call, program section)
• Predefined source code templates
• User-defined source code templates

Autocorrection • Correction of identifier notation
• Correction of keyword notation

Syntax highlighting • Freely configurable
• Separate for structured text, global variable lists, data types and hardware

configuration
Quick fixes • Declaration of variables and function block instances

• Creation of missing elements (connection marks, jumps and jump labels)
• Updating of the function block interface

Version control • Comparison with locally stored versions (local history)
• Comparison with source code from SVN or GIT

Changes • Project-wide rename of identifiers
Information • Context-sensitive information in the tooltip on identifier (ST)

• Context-sensitive information on function block and pin (CFC)
Keyboard operation • Execution of most frequently used actions with keyboard shortcuts

• Programming possible also in CFC via keyboard
Validation • Syntactical and semantic checking of the source code on typing

• Display of problems directly in the source code and in the error view

Automation / Engineering Software / Programming

Bachmann electronic GmbH • 08/2021 • Specification subject to change – the product’s characteristics are exclusively governed by the data of the respective user manual.

PLC Developer

Configuration

Symbol configuration • Visibility of the local and global variables
• Access to local and global variables
• Export of collective, structure and array entries
• Inheritable configurations

Global variable lists • Declaration of global variables
• Declaration of global constants
• Declaration of global retain variables

Variable configuration • Assignment of variables to physical hardware addresses

Task configuration • Up to 16 tasks configurable
• Configuration of called programs
• Configuration of task type (cyclic, sync, event/error interrupt, free wheeling)
• PTP synchronization
• Watchdog timeout

Process image • Hardware import of online and offline device (selective)
• Manual addition of hardware modules

Project settings • Version number
• Name of the module (m-file)
• Error tolerance
• Multicore suitability
• Conflict handling with retain variables
• Memory layout
• Marker settings

Online Operation

Installation • Online change for code changes
• Target controller permanently or dynamically selectable
• Installation on target controller temporarily or permanently
• Name of the module instance freely selectable

Initialization • Selectable debug task on start (with multitasking projects)

Deploy configurations • Several configurations per project possible
• Combined execution of several configurations possible (launch groups)
• Management of favorites

Debugging – Troubleshooting

Stepwise processing • Stopping of the application via breakpoint
• Step into/over/return

Monitoring • Variable values in the monitoring table in the editor (ST/CFC)
• Variable values inline (only CFC)
• Variable list for selected variables
• Display of executed code via flow control

Display • Changing the format of INT values (dec, hex, bin)
• Current stack frame when the application is stopped

Libraries • Internal libraries by incorporating the source codes (linked resources)
• External libraries by connecting with the source codes (C/C++)

Manipulation • Variable values can be set (one-off write)
• Variable values can be forced (writing before each execution)

Visualization • Generation of a complete webMI visualization from CFC blocks (PLC Insight)
• Transfer of the visualization to the target together with the application
• Monitoring and changing the exported variables via the visualization
• Tracking the signal flow based on the connections between the function blocks

Automation / Engineering Software / Programming

