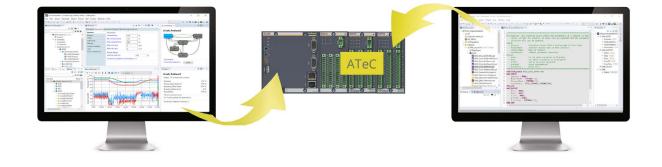


项目	货号
ATeC 16 RT	00031376-63
ATeC 32 RT	00031377-63
ATeC 64 RT	00031378-63
ATeC 128 RT	00031379-63
ATeC 256 RT	00031380-63

ATeC 自适应温度控制器

用于热过程的识别、参数确定和智能控制


稳定的热工艺条件为复杂的生产系统提供了基础。自适应温度控制器 (ATeC) 支持以最高的控制质量快速完成此项任务。与其他控制序列并行,一个 ATeC 模块在 M1 实时系统上最多同时运行 256 个温度控制回路。

自动确定参数

ATEC 是专为加热系统以及联合加热和冷却系统而设计。该系统采用集成的识别程序,能够自动确定不同生产线的特征。计算的控制参数能够优化参考变量响应,抑制干扰,而不需要精深的控制专业知识。不再需要执行非常耗时的实验。这可以显著降低成本,尤其是对于具有长时间常数的过程,或在更换工具后需要在操作过程中进行全自动调整的情况。

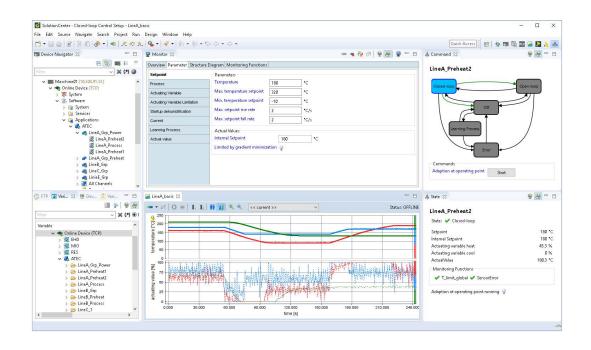
能源优化控制

多个通道可以组合成一组,并进行协调控制。通过 PWM 或 PFM 产生的控制驱动器的脉冲在一个周期内自动分布,因此几乎可以实现恒定功耗。通过启动优化,每个回路的控制以一种"允许所有区域几乎同时达到其设定温度"的方式启动。如此一来,无需额外的工作和费用即可节省宝贵的能源。如有必要,电力和能源管理将限制总功率的释放。这样,驱动器的控制就能适应现有电源连接,而无需进一步调整。

处理耦合系统

当多个加热和冷却系统相互影响时,单独考虑单个控制系统已经无法满足需求。通过调整其操作点,控制器完全根据这些条件进行调整。此外,已知的干扰变量可以考虑用于前馈控制。如此一来,即使在生产条件下也能获得最佳结果。

包括监控


如果控制回路未按预期运行,ATeC 能够预先诊断。监控温度限制、控制偏差或温度公差带均为标准功能。通过验证加热电流,可以检测到未确定或可能已经出现的加热器故障。

如果出现故障,可以根据工艺要求选择所需的反应。如果材料在进 给螺杆中会变硬,加热保持在恒定的功率水平。另一方面,如果预 期超过最高温度限制,则关闭加热。

完全集成至工程工具

自适应温度控制器完全集成在 SolutionCenter 中,可保证启动和运行模式期间的最大便利性。为对 ATeC 软件模块进行配置和参数化,产品引入了自定义接口。

或者,自适应温度控制器 (ATeC) 还可集成到应用中。库文件可供 C/C++ 以及 IEC 61131-3 编程语言使用。除其他应用变量之外,所 有温度和操作变量也都可以使用 Scope3 进行监控。这允许在任何 时候(甚至是实时操作过程中)快速捕获并以图形方式显示温度控 制特性。

ATeC - 自适应温度控制器	
产品总体特性	
通道配置	一个通道内实现加热和冷却的闭环控制
可实现通道数量	256
通过分组功能分组	可用
采样时间	20 ms 至 100 s
温度单位	°C, K, °F
可用功能摘录	
温度控制系统的识别	不同类型控制系统的自动参数识别
自动确定控制参数	基于已识别的控制路径模型进行计算。可选择所需控制器类型。
考虑耦合的系统	在系统识别和运行中(尤其是在加热阶段)都需要考虑相互作用
电力和能源管理	在局部供电连接的基础上,对局部或整个系统进行动态或连续的功率限制
启动时间优化	所选单个控制的启动时间,以确保所有温度控制系统同时达到其设定值。
加热电流监控	基于被操纵变量输出的测量电流的合理性检查,用于识别部分或全部失效的加热元件。电流的自动初始测量。
加热过程中的除湿	加热元件在一段规定时间内保持一个可选择的启动温度。通过此种方式,任何湿气都可以在不损坏加热元件的情况下缓慢逸出。
多项监控功能	温度限值、公差带、测量值更新、传感器故障等
信号接口	
数字信号	DI 和 DO 类的所有巴合曼模块
模拟信号	AIO20x/SI, AIO208, AIO216, GIO212, AI208/SI AO 类的所有巴合曼模块
温度测量	GIO212, AIO20x/SI, AIO208, AIO216, TCO2xx-C: 温度传感器和热电偶分别列在各自的数据表中
功率测量	GM260, GMP232/x, GSP274
现场总线模块	所有相应的巴合曼模块
驱动器控制	
模拟致动	0-100%,可在所需输出条件下扩展
数字致动	・ 编码器模块(PWM)
	・ 脉冲频率调制 (PFM) ・ 通过 2 路輸出 (开, 闭) 连续致动
软件接口	一 但是 4 如 倒 叫 () , 例)
API 用户接口	用于其他应用中触发的参数分配、操作和诊断的 IEC 61131-3 以及 C/C++ 库
过程通信	通过 SVI(标准变量接口)提供所有的值

ATeC - 自适应温度控制器		
ATEC 配置、参数分配和操作		
SolutionCenter	完全集成	
应用	库: IEC 61131-3, C/C++	
外部程序	通过DI通道启用操作	
安装		
交付形式	作为 M-Base 的组成部分提供	
许可	可配置通道的数量取决于许可	
许可保护	硬件相关许可文件	
系统要求		
实时系统	 巴合曼 MH、MC、MX、MPC 系列 M1 处理器模块 M-Base V3.95 及更高版本 Cpp 库 V4.1 RAM: 第一个通道大约需要 8 MB 的空闲内存,每增加一个通道增大 220 kB 	
工程计算机配置需求	计算机相关要求参见 SolutionCenter 产品数据报表	
工程组态软件	SolutionCenter V2.30 或更高版本(M-Base V4.30)	

ATeC 订购代码		
项目	货号	描述
ATeC 16 RT	00031376-63	ATeC 软件多通道温度控制器运行时许可。最多可实现 16 个控制系统的配置、参数化和操作。绑定到目标设备的许可。
ATeC 32 RT	00031377-63	ATeC 软件多通道温度控制器运行许可。最多可实现 32 个控制系统的配置、参数化和操作。绑定到目标设备的许可。
ATeC 64 RT	00031378-63	ATeC 软件多通道温度控制器运行许可。最多可实现 64 个控制系统的配置、参数化和操作。绑定到目标设备的许可。
ATeC 128 RT	00031379-63	ATeC 软件多通道温度控制器运行时许可。最多可实现 128 个控制系统的配置、参数化和操作。绑定到目标设备的许可。
ATeC 256 RT	00031380-63	ATeC 软件多通道温度控制器运行时许可。最多可实现 256 个控制系统的配置、参数化和操作。绑定到目标设备的许可。